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Abstract. In this paper we reveal a zero-temperature quantum phase transition for the single-mode super-
radiant model with the form A2 from the normal to superradiant phase by mean of the Holstein-Primakoff
transformation. In the thermodynamic limit, in which the numbers of atoms becomes infinite, the ground
state energy and corresponding wavefunctions of both the normal and superradiant phases are obtained
and therefore the scaling behavior near the critical transition point is derived.

PACS. 42.50.Fx Cooperative phenomena in quantum optical systems – 73.43.Nq Quantum phase
transitions

1 Introduction

It is well-known that the single-mode superradiant model
(SMSM) [1] describes a collection of N two-level atoms
interacting with a single bosonic mode via a dipole inter-
action with an atom-field and now belongs to essential
ingredients in theoretical quantum optics [2], nuclear
physics [3], quantum chaos [4], and quantum dissipa-
tion [5] etc. In this model the spin algebra can be used
to describe single or many two-level atoms. A common
feature of SMSM is that in general they are noninte-
grable, with exact solutions available only for very specific
cases [6]. One is simplified “dephasing models”, where the
spin couples to both the boson and static field via only one
of its components [3]. The other is in the large spin limit
where bosonic representations, which is an early example
for using the Holstein-Primakoff (HP) transformation [7].
Dicke ever used this model to illustrate the importance of
collective effects of superradiance, where the atomic en-
semble spontaneously emits, as one would expect if the
atoms were radiating incoherently.

The thermodynamic phase transition for SMSM was
firstly investigated in rotating-wave approximation by
Hepp and Lieb [8] and by Wang and Hioe through mak-
ing use of a set of Glauber’s coherent states for the
field [9]. Based on reference [9], Hioe discussed a gener-
alized SMSM including an interaction energy of the form
a+σ+ + aσ− [10]. In the recent year, the quantum phase
transition (QPT) for SMSM has been revealed by Emary
and Brandes by using HP transformation [11,12] and then
has been generalized to the case with arbitrary boson cou-
pling in the pseudo-spin x− z plane [13].
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It has been clear that Hamiltonian for SMSM origi-
nates from the Hamiltonian describing that many atoms
interact the electromagnetic fields with the assumptions
as follows: the energy of the term A2 is negligibly small;
all the atoms vector potential can be evaluated at the
center common in the long-wavelength limit; stat ψ is
metastable and decay processes to lower states can be
ignored; and under rotating-wave approximation, the an-
tiresonant terms are allowed to omit. It should be noted
that the controversy whether the thermodynamic phase
transition can be affected by the term A2 has been dis-
cussed in the finite temperature [14–21].

In contrast to these earlier works, in this paper we will
consider this phase transition at zero temperature, where
increasing the coupling parameter derives the system to
undergo a transition from the normal to the super-radiant
phases. In thermodynamic limit that N → ∞, the corre-
sponding ground state energy and wavefunctions of both
the normal and super-radiant phase are given by means of
HP transformation and therefore the scaling behavior near
the critical transition point is also obtained. It is shown
that by using this method the wavefunctions can provide
a useful way to describe the quantum phase transition.

2 The SMSM in the HP representation

The generalized Hamiltonian of SMSM with the energy of
the form κ(a+ + a)2 without the rotating-wave approxi-
mation is written as [14–21]

H = ωa+a+κ(a++a)2+
N∑

i=1

[ω0σ
i
z+

λ√
N

(σi
++σi

−)(a++a),

(1)
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where a, a+ are the photon annihilation and creation op-
erators; σ+ and σ− are the spin operators for the jth atom
defined as σ± = σx±iσy, where σx and σy are the x and y
components of the Pauli matrices; λmeasures the coupling
of the interaction terms (σ+ + σ−)(a+ + a); κ describes
the effect of the energy of the term (a+ + a)2; �ω0 is the
energy difference between the two levels of the atom and ω
is the frequency of the electromagnetic wave; and N is the
total number of atoms. The origin of the factor 1/

√
N in

the interaction is the fact that the original dipole coupling
strength is proportional to 1/

√
V , where V is the volume

of the cavity. If introduced the density of the atoms in the
cavity ρ = N/V , it becomes

√
ρ/N and by subsuming the

density into the coupling constant we obtain 1/
√
N .

In terms of the collective atomic operators defined as:
Jz =

∑N
i=1 σ

i
z , J± =

∑N
i=1 σ

i
± with j = N/2, equation (1)

can be written as

H = ωa+a+ κ(a+ + a)2 +ω0Jz +
λ√
2j

(J+ + J−)(a+ + a).

(2)
It is clear that the introduced collective atomic operators
satisfy SU(2) commutation relations such that [Jz, J±] =
±J± and [J+, J−] = 2Jz. By using the HP transformation
of the angular momentum operators defined as [7]: J+ =
b+
√

2j − b+b, J− =
√

2j − b+bb, Jz = (b+b − j), where
[b, b+] = 1, Hamiltonian (2) can be rewritten as

H = ω0(b+b− j) + ωa+a+ κ(a+ + a)2

+ λ(a+ + a)(b+
√

1 − b+b/2j +
√

1 − b+b/2jb). (3)

Hamiltonian (3) contains virtually the formation of QPT
in the thermodynamic limit, in which the number of atoms
becomes infinite, N → ∞, and therefore j → ∞. Some
detailed discussions will be given in the following sections.

3 The normal phase

If simply neglecting terms with j in the denominator of
Hamiltonian (4) we can obtain effective Hamiltonian in
this phase

H(N) = ω0b
+b+ ωa+a+ κ(a+ + a)2

+ λ(a+ + a)(b+ + b) − ω0j, (4)

which is a bilinear Hamiltonian in the bosonic operators
and can be easily diagonalized by introduction of posi-
tion and momentum operators such that: a+ = (

√
ωx −

i (1/
√
ω) px)/

√
2 and b+ = (

√
ω0y − i (1/

√
ω0) py)/

√
2.

Therefore we have

H(N) =
1
2
[
(ω2 + 4κω)x2 + p2

x + ω2
0y

2 + p2
y

+4λ
√
ωω0xy − ω − ω0] − jω0. (5)

By rotating the coordinate system defined as x =
q1 cos γ(N) + q2 sinγ(N) and y = −q1 sinγ(N) +

q2 cos γ(N) with tan(2γ(N)) = 4λ
√
ωω0/[ω2

0 − (ω2 +4κω)],
Hamiltonian (5) can be diagonalized as

H(N) =
1
2

[(
ε
(N)
−
)2

q21 + p2
1

+
(
ε
(N)
+

)2

q22 + p2
2 − ω − ω0

]
− jω0, (6)

where

(
ε
(N)
±
)2

=
1
2

{
ω2

0 + (ω2 + 4κω)

±
√

[ω2
0 − (ω2 + 4κω)]2 + 16λ2ωω0

}
. (7)

It is important that ε(N)
− is real only when

λ � 1
2

√
ω0(ω + 4κ) = λc, (8)

where λc is nothing but the critical transition point be-
tween the normal and super-radiant phases. The funda-
mental excitations of the system are given by the energies
ε± which describe collective modes where ε− and ε+ are
recognized as the photonic and atomic modes respectively
seen from their properties of λ-dependence (see Fig. 3).

In this phase, the ground state energy is given by

E
(N)
G = −jω0, (9)

which is O(j), whereas the excitation energies ε(N)
± are

O(1). This means that by scaling our energies with j, the
excitation spectrum above the ground state becomes qua-
sicontinuous in the j → ∞.

Since the normalized ground state wavefunctions of a
single harmonic oscillator in terms of its coordinate q is a
Gaussian, namely,

G
(N)
± =

(
ε
(N)
±
π

) 1
4

exp

(
−ε

(N)
±
2
q2

)
,

in the q1 − q2 representation the ground state wavefunc-
tions Ψ(N)

G are given by

Ψ(N)
G = G

(N)
− (q1)G

(N)
+ (q2). (10)

In the x− y representation, we have

Ψ(N)
G = G

(N)
−
(
x cos γ(N) − y sin γ(N)

)

×G
(N)
+

(
x sin γ(N) + y cos γ(N)

)
. (11)

From the numerical results illustrated by equation (11),
Figures 2 show that the ground state wavefunctions are
varied through the coupling parameter λ from 0 to 0.5269
with ω0 = 1, ω = 0.9 and κ = 0.053. From Figure 2
it can be seen that the ground state wavefunctions are
the product of orthogonal Gaussians of equal width at
λ = 0; with the increasing of coupling parameter λ, the
wave packet becomes stretched in a direction determined
by the angle γ(N) that on resonance is simply equal to
π/4; this stretching increases up to λc = 0.527, where the
ground state wavefunctions diverge.
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Fig. 1. The ground wavefunctions Ψ
(N)
G for the normal phase

in the x − y plane as a function of the coupling parameter
λ = 0, 0.2, 0.4, 0.527 with ω0 = 1, ω = 0.9 and κ = 0.053.

4 The superradiant phase

In order to effectively discuss the superradiant phase we
must incorporate the fact that both the atomic ensem-
ble and the field get macroscopic occupations, in which
the HP transformation can be also implemented by the
following bosonic operators [22]:

a+ → c+ +
√
α, b+ → d+ −

√
β, (12)

Fig. 2. The ground wavefunctions Ψ
(S)
G for the superradiant

phase in the x′ − y′ plane as a function of the coupling param-
eter λ = 0.5271, 0.6, 0.8, 1 with ω0 = 1, ω = 0.9 and κ = 0.053.

where
√
α = (2λ/(ω + 4κ))

√
(j/2)(1 − u2) and

√
β =√

j(1 − u) with

u =
ω0(ω + 4κ)

4λ2
=
λ2

c

λ2
.

This choice of the displacement constants make this quan-
tum system to be fixed at the minimum value of the free
energy. With the same calculations as those in the normal
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phase Hamiltonian (3) can be written as

H(S) = ωc+c+ κ(c+ + c)2 +
ω0

2u
(1 + u)d+d

+
ω0(1 − u)(3 + u)

8u(1 + u)
(d+ +d)2 +λu

√
2

1 + u
(c+ + c)(d+ +d)

− j

[
2λ2

ω + 4κ
+
ω2

0(ω + 4κ)
8λ2

]
− λ2

ω + 4κ
(1 − u), (13)

and furthermore can diagonalized, in terms of c+ =
(
√
ωX− i(1/√ω)PX)/

√
2, d+ = (

√
ω̃Y − i(1/√ω̃)PY )/

√
2

with ω̃ = (ω0/2u)(1 + u), as

H(S) =
1
2

[
(ε(S)

− )2Q2
1 + P 2

1 + (ε(S)
+ )2Q2

2 + P 2
2 − ω − ω̃

]

− j

[
2λ2

ω + 4κ
+
ω2

0(ω + 4κ)
8λ2

]
− λ2

ω + 4κ
(1 − u), (14)

where X = Q1 cos γ(S) + Q2 sin γ(S) and
Y = −Q1 sinγ(S) + Q2 cos γ(S) with tan(2γ(S)) =
4λ

√
uωω0/[ω2

0/u
2 − (ω2 + 4κω)],

(
ε
(S)
±
)2

=
1
2

{
ω2

0

u2
+ (ω2 + 4κω)

±
√[

ω2
0

u2
− (ω2 + 4κω)

]2
+ 16λ2uωω

⎫
⎬

⎭ . (15)

The excitation energy ε
(S)
− is required to remain real so

that λ � λc.
The ground state energy in this phase is obtained by

E
(S)
G = −N

[
2λ2

ω + 4κ
+
ω2

0(ω + 4κ)
8λ2

]
. (16)

The corresponding ground state wavefunctions are also
diagonal in the Q1 − Q2 representation and can be ex-
pressed by

Ψ(S)
G (Q1, Q2) = G

(S)
− (Q1)G

(S)
+ (Q2), (17)

where G
(S)
± = (ε(S)

± /π)
1
4 exp(−(ε(S)

± /2)q2). In the x − y
representation as

Ψ(S)
G (x, y) = G

(S)
−
((
x−

√
2α/ω

)
cos γ(S)

−
√
ω0/ω̃

(
y +

√
2β/ω0

)
sin γ(S)

)

×G
(S)
+

((
x−

√
2α/ω

)
sin γ(S)

+
√
ω0/ω̃

(
y +

√
2β/ω0

)
cos γ(S)

)
.

(18)

This expression contains displacements involving the
macroscopic quantities α and β and can be removed in
the new coordinates x′ and y′ given by x′ = x −∆x and
y′ = y +∆y with ∆x =

√
2α/ω and ∆y =

√
2β/ω0. The
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Fig. 3. The excitation energies of the photonic and atomic
mode as a function of the coupling parameter λ with ω0 = 1,
ω = 0.9 and κ = 0.053.
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Fig. 4. The scaled ground state energy EG as a function of
the coupling parameter λ with ω0 = 1, ω = 0.9 and κ = 0.053.

relationship between the coordinate systems x′ − y′ and
X − Y is given simply by x′ = X and y′ =

√
ω0/ω̃Y .

Furthermore, the coordinate system x′ − y′ is very useful
because although X − Y is the diagonal representation
for the superradiant phase, the definition of these coordi-
nates depends upon ω̃ and hence upon the parameter κ.
By means of these coordinates, the ground state wave-
functions can be rewritten as

Ψ(S)
G (x′, y′)=

(ω0

ω̃

) 1
4
G

(S)
−
(
x′ cos γ(S)−

√
ω0/ω̃y

′ sin γ(S)
)

×G
(S)
+

(
x′ sin γ(S) +

√
ω0/ω̃y

′ cos γ(S)
)
. (19)

Figure 3 shows that the ground state wavefunctions are
varied via the coupling parameter λ from 0.5271 to 1
with ω0 = 1, ω = 0.9 and κ = 0.053. It can be seen that
the main results are contrary to those in the normal phase.

5 Quantum phase transition

Having obtaining the effective Hamiltonians of the nor-
mal and superradiant phases in the thermodynamical limit
j → ∞, we now reveal some properties for this quantum
system of its two phases. The numerical results of the ex-
citatation energies for the photonic and atomic mode and
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the scaled ground state energy are respectively shown in
Figures 3 and 4. From Figure 3 we can see that as cou-
pling approaches the critical transition point λc, the ex-
citation energy of photonic mode vanishes, which proves
the existence of QPT. In contrast, the excitation energy of
atomic mode tends towards a value of

√
ω2

0 + (ω2 + 4κω)
as λ → λc from either direction. The scaling behavior of
the excitation energy of the photonic mode is seen to be
ε− ∝ |λ− λc|2µ with the exponent µ = 1/4 describing
the divergence of the characteristic length ξ = (ε−)−1/2.
Figure 4 shows that in the normal phase there is no in-
teraction between the atoms and field and all atoms are
located at the ground state, however, this interaction oc-
curs in the superradiant phase which implies that both
the atoms and field acquire the macroscopic excitations.
It can be also checked that the second-order derivative of
the scaled ground state energy with respect to λ has dis-
continuity which displays the existence of QPT. At the
phase transition point λc, the Hamiltonian for both the
normal and superradiant phases is equal and can be writ-
ten as H(N)(λc) = H(S)(λc) = {[ω2

0 +(ω2 +4κω)]q22 +p2
2−

ω−ω0}/2− jω0. Comparing our results with the previous
known results given in the standard Dicke model it can be
found that the critical transition point is increased due to
the existence of the form A2.

6 Conclusions

In conclusion, we have presented the analytical discussions
of QPT for generalized SMSM with the formA2. By means
of the HP transformation the ground state energies and
wavefunctions of both the normal and superradiant phases
have been obtained and therefore the scaling behavior near
the critical transition point λc has been revealed.

This work was supported the Natural Science Foundation of
Zhejiang Province under Grant Nos. Y605037 and 102002.
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